• 0 Posts
  • 9 Comments
Joined 1 month ago
cake
Cake day: December 6th, 2024

help-circle

  • Just adding to it from the other side (ish) of it.

    The point being that what you describe is a broader phenomenon and that, at least amongst Techies, taking in account the point of view of the people on the other side and chosing objective-oriented language with minimal or no social niceties if you figure out they’re constrained in the time they have for handling messages like the one you’re sending, is something one learns rather than coming naturally.

    Same kind of thing applies, for example, when applying to certain jobs: in your cover letter of even CV you put all the stuff they care about for baseline selection upfront and the kind of stuff that matters “if they’re interested” comes afterwards so that if it’s clearly not a fit people’s time doesn’t get wasted. It’s nice for the people on the other side and, as somebody who has been on the other side, this is appreciated and shows professionalism which will help the candidate out if they do seem interesting from reading that baseline selection info.

    Not the same thing as your specific situation but same pattern, IMHO.


  • Look for a processor for the same socket that supports more RAM and make sure the Motherboard can handle it - maybe you’re lucky and it’s not a limit of that architecture.

    If that won’t work, breakup your self-hosting needs into multiple machines and add another second hand or cheap machine to the pile.

    I’ve worked in designing computer systems to handle tons of data and requests and often the only reasonable solution is to break up the load and throw more machines at it (for example, when serving millions of requests on a website, just put a load balancer in front of it that assigns user sessions and associated requests to multiple machines, so the load balancer pretty much just routes request by user session whilst the heavy processing stuff is done by multiple machines in such a way the you can just expand the whole thing by adding more machines).

    In a self-hosting scenario I suspect you’ll have a lot of margin for expansion by splitting services into multiple hosts and using stuff like network shared drives in the background for shared data, before you have to fully upgrade a host machine because you hit that architecture’s maximum memory.

    Granted, if a single service whose load can’t be broken down so that you can run it as a cluster, needs more memory than you can put in any of your machines, then you’re stuck having to get a new machine, but even then by splitting services you can get a machine with a newer architecture that can handle more memory but is still cheap (such as a cheap mini-PC) and just move that memory-heavy service to it whilst leaving CPU intensive services in the old but more powerful machine.


  • At some point in my career I worked in Investment Banking making custom software directly for people like Traders (so in the are of IT in that industry that’s called the Front Office)

    Traders have almost no free time, hence no time for social niceties, plus they’re “the business” which is the reason for Front Office IT to exist and for whom it works, so eventually you just have to figure out their point of view and that the only way you can do the part of your work that requires interacting with them (to figure out what they need or letting them know what’s now available for them to use) is to use straightforward objective-oriented talks like that.

    It was actually quite a learning experience for me as a techie to learn how to interact with time constrained people who aren’t going to change to suit you, in a way that best does what’s needed for both.



  • Whilst I agree with you in everthing but the first 2 words of your post, I think this is yet another “look at this cool gadget” post that overhypes something, and that is a kind of spam we get a bit of around here, even if nowhere near the levels of the Elon crap or even just US politics.

    This is especially frustratingfor people who, like me, looked at the diagram they link from their article and found out it’s pretty much the same as a run of the mill breadboard power adaptor with a USB-C connector and a slightly better design than the cheap chinese ones, rather than something trully supporting USB-PD (this thing doesn’t even support the basic USB 1.0 negotiation needed to get more than 150mA when connecting to a proper USB host).

    That the article then mentions a “crowdfunding campaign” for something that a junior EE can design with a bit of datasheet digging, carries a bit of a stink of a cash-grab, so seeing it as spam is understandable.


  • If you look at the circuit diagram in their documentation linked from that article, that thing doesn’t even support USB-PD or even just the USB 1.0 device side of the negotiation to increase the current limit from the default (150mA in USB 3) to high (900mA in USB 3). It will look like it works fine if you connect it to a dumb USB power supply (because those thing don’t really do any USB protocol stuff, just dumbly supply power over USB connectors up to the power source’s limit) but if you connect it to, say, a PC USB port (which does implement the USB host side of the USB protocol), your circuit on the breadboard that worked fine when using a dumb USB power supply with that breadboard adaptor might not work because the current it needs exceeds that default 150mA limit for devices that haven’t done USB negotiation (worse if it’s a USB 2.0 port, as the limit is lower for those)

    This thing is basically the same as the chinese power breadboard adaptors you can get in places like Aliexpress, but with a USB-C connector instead of a Type-A, micro-USB or mini-USB one, plus its better designed (it has a proper Buck Converter instead of a cheap Votage Regulator, plus better power supply filtering and a polyfuse to protect it and the host from current overdraws).

    The headline and the article seriously exagerate this “achievement”.


  • TL;DR - It’s a nice and pretty run of the mill breadboard power adaptor which happens to support USB-C connectors, but the article and its title insanely oversell the thing.

    This is not exact as amazing an achievement as the headline implies since the necessary stuff to talk the to the USB PD host upstream is already integrated so you just need to get a chip that does it (and even without it, you’ll get 150mA @ 5V by default out of the USB 3 host upstream and up to 900mA with some pretty basic USB negotiation in a protocol that dates from USB 1.0 and for which there have long been integrated solutions for both the device and the host sides).

    Further, the converting of those 5V to 3.3V just requires a buck converter or even just a voltage regulator (though this latter option is less efficient), for which there are already lots of integrated solutions available for peanuts and where the entire circuit block needed to support them is detailed in the datasheet for that converter.

    Looking at the circuit diagram for this (linked to from the article), they’re not even doing the USB PD negotiation or any kind of USB 1.0 negotiation, so this thing will be limited to 150mA for a USB 3 host or whatever current your traditional USB power source can supply (as those power sources really just do power supply of whatever amperage they support over a cable which happen to have USB connectors, rather than including a genuine implementation of an USB host with current limiting depending on negotiation with the USB device, so such power sources don’t require the device to do any USB negotiation to increase the current limit above 150mA).

    This is really “yet another run of the mill USB power breadboard adaptor” only the USB plug is USB-C rather than mini-USB or micro-USB (so, a different plug plus a handfull of minor components as per the standard of the circuitry to properly support it), so pretty much the same as the cheap chinese ones you can get from Aliexpress, though this one uses a Buck Converter rather than the $0.1 Voltage Regulator in most of the chinese boards, and actually does proper filtering of power supply noise and proper protection against over current, so it is a quality design for such things, though it’s not really a major advancement.

    Without the USB PD stuff I wouldn’t really say that it brings USB-C Power to the breadboard (in the sense of, as many would expect, being able to draw a proper amount of power from a modern USB 3.0 power brick that supports USB-C), more something with a USB-C connector that brings power to the motherboard, as that connector is really the total sum of what it supports from the modern USB spec.

    What would really be nice would be something that does talk USB-PD to the upstream host AND can convert down from the 20V at which it supplies peak power, so that you can take advantage of the juicy, juicy (oh so juicy!) capability of USB-PD to supply power (up to 100W right now, which will be up to 250W with USB 4), though if you’re pulling 100W (which at 5V means 20A, which is a stupidly high current that will melt most components in a typical digital circuit) from you breadboard power adaptor, then I’m pretty sure magic smoke is being released from at least one of the components on that breadboard and, by the way, you’re probably damaging the power rail of that breadboard (aah, the sweet smell of burnt plastic when you turn the power on for your half-arsed experimental circuit!!!)